Logo

Programming-Idioms

# 187 Disjoint Set
Disjoint Sets hold elements that are partitioned into a number of disjoint (non-overlapping) sets.
New implementation

Be concise.

Be useful.

All contributions dictatorially edited by webmasters to match personal tastes.

Please do not paste any copyright violating material.

Please try to avoid dependencies to third-party libraries and frameworks.

Other implementations
public class DisjointSetElement {
  private DisjointSetElement representative = this;

  public DisjointSetElement getRepresentative() {
    if (representative != this) {
      representative = representative.getRepresentative();
    }
    return representative;
  }

  public void union(DisjointSetElement other) {
    other.getRepresentative().representative = getRepresentative();
  }
}
  
(defstruct disjoint-set
  elements)

(defun make-disjoint-set (elements) 
  (make-disjoint-set :elements elements))

(defun partition (disjoint-set)
  (loop for element in (disjoint-set-elements disjoint-set) 
       collect 
        (let ((found (find element (mapcar #'first (rest disjoint-set)) 
                    :test #'equal)))
          (if found
              (acons element element found :test #'equal)
              (acons element element nil :test #'equal)))))
use feature 'say';
use Graph::UnionFind;
my @vert = (1..5);
my @edges = ( [1, 2], [2, 3], [4, 5] );

$uf->add( $_ )   for @vert;
$uf->union( $_ ) for @edges;

# find and consolidate partitions into a hash
my %part;
foreach my $v( @vert ) {
    my @pa = $uf->find($v);
    my $p = shift @pa;
    $part{$p} //= [];
    push @{ $part{$p} }, $v;
}

foreach my $k (sort keys %part) {
    my $vals = join ' ', @{ $part{$k} };
    say "$k : $vals";
}
# prints:
#   2 : 1 2 3
#   5 : 4 5
class UnionFind:
    def __init__(self, size):
        self.rank = [0] * size
        self.p = [i for i in range(size)]

    def find_set(self, i):
        if self.p[i] == i:
            return i
        else:
            self.p[i] = self.find_set(self.p[i])
            return self.p[i]

    def is_same_set(self, i, j):
        return self.find_set(i) == self.find_set(j)

    def union_set(self, i, j):
        if not self.is_same_set(i, j):
            x, y = self.find_set(i), self.find_set(j)
 
require 'set'
a.disjoint?(b)