Logo

Programming-Idioms

Pass an array a of real numbers to the procedure (resp. function) foo. Output the size of the array, and the sum of all its elements when each element is multiplied with the array indices i and j (assuming they start from one).
New implementation

Be concise.

Be useful.

All contributions dictatorially edited by webmasters to match personal tastes.

Please do not paste any copyright violating material.

Please try to avoid dependencies to third-party libraries and frameworks.

Other implementations
subroutine foo(a)
  implicit none
  real, dimension(:,:) :: a
  real :: s
  integer :: i,j
  print *,size(a,1), size(a,2)
  s = 0
  do j=1,size(a,2)
    do i=1,size(a,1)
      s = s + a(i,j) * i * j
    end do
  end do
  print *,s
end subroutine foo
!
  call foo(a)
import "fmt"
func foo(a [][]int) {
	fmt.Println("array is ", len(a)[0], " x ", len(a))
	x := 0
	for i, v1 := range a {
		for j, v2 := range v1 {
			x += v2*(i+1)*(j+1)
		}
	}
	fmt.Println("result: ", x)
}
/**
 * @param {Array<Array>} arry
 *
 * @return {Array<Array>}
 */
function foo(arry) {
  let len = 0;
  let sum = 0;

  arry.forEach(function(base, i) {
    len += base.length;

    base.forEach(function(a, j) {
      sum += a * (i + 1) * (j + 1);
    });
  });

  console.log('Array size:', arry.length, ',', len);

  return sum;
}

foo(arry2d);
public static void foo(int[][] a){
       System.out.println("Array a has a size of " + a.length+" by " + a[0].length);
       int sum = 0;
       for (int i = 0; i<a.length; i++){
           for (int j = 0; j<a[0].length; j++){
               sum += ((i+1)*(j+1)*a[i][j]);
           }
       }
       System.out.println("The sum of all elements multiplied by their indices is: " + sum);
    }
import static java.lang.System.out;
void foo(double a[][]) {
    int i, j, m = a.length, n;
    double z = 0, t;
    out.println(m);
    for (i = 0; i < m; ++i) {
        n = a[i].length;
        for (j = 0; j < n; ++j) {
            z = (z + ((t = a[i][j]) * (i + 1)));
            z = (z + (t * (j + 1)));
        }
    }
    out.println(z);
}
procedure foo(a: array of double);
var
  sum: double;
  i: Integer;
begin
  for i := low(a) to high(a) do
    sum := sum + (i+1)*a[i];
  writeln('Size = ',Length(a),', Sum = ',sum:6:5);
end;

...
  foo(a);
...
use List::Util qw(max);
sub foo {
    my ($A) = @_;
    my $i_size = @$A;
    my $j_size = max map { 0 + @$_ } @$A;
    printf "dimensions: %d %d\n", $i_size, $j_size;

    my $s;
    for my $i (1 .. $i_size) {
        for my $j (1 .. $j_size) {
            $s += $A->[$i - 1][$j - 1] * $i * $j;
        }
    }
    printf "sum: %f\n", $s;
}
def foo(a):
    print(len(a))
    print(sum(
        x*(i+1) + y*(i+1)*2 for i, (x, y) in enumerate(a)
    ))
from functools import reduce
from operator import mul
from itertools import starmap
def foo(a):
    z, f = 0, lambda a, b: a + (i * b)
    for i, x in enumerate(a, 1):
        x = starmap(mul, enumerate(x, 1))
        z = z + reduce(f, x, 0)
    print(len(a), z)
foo(a)
def foo(a):
    z = 0
    for i, x in enumerate(a, 1):
        for j, y in enumerate(x, 1):
          # z = z + (y * i) + (y * j)
            z = z + (y * i * j)
    print(len(a), z)
foo(a)
def foo(ar)
  puts "Array size: #{ar.size}, #{ar.max.size}."
  ar.each.with_index(1).sum do |a, i|
    a.each.with_index(1).sum do |el, j|
      el*i*j
    end
  end
end

puts foo(array)
#[macro_use] extern crate itertools;
fn foo(a: Vec<Vec<usize>>) {
    println!(
        "Length of array: {}",
        a.clone()
            .into_iter()
            .flatten()
            .collect::<Vec<usize>>()
            .len()
    );

    let mut sum = 0;
    for (i, j) in izip!(&a[0], &a[1]) {
        sum += i * j
    }

    println!("Sum of all products of indices: {}", sum);
}