Logo

Programming-Idioms

Calculate n, the Euclidean norm of data (an array or list of floating point values).
New implementation

Be concise.

Be useful.

All contributions dictatorially edited by webmasters to match personal tastes.

Please do not paste any copyright violating material.

Please try to avoid dependencies to third-party libraries and frameworks.

Other implementations
n = norm2( data )
func Euclidean(data []float64) float64 {
	n := 0.0
	for _, val := range data {
		n += val * val
	}
	return math.Sqrt(n)
const n = Math.hypot(...data)
var n = Math.hypot.apply(null, data)
double n = 0d;
for(double value : data) {
	n += value * value;
}
n = Math.sqrt(n);
uses math;
var
  data: array of double;
...
  n := norm(data);
...
use Math::GSL::Vector qw();
use Math::GSL::BLAS qw(gsl_blas_dnrm2);
my $data = [5.0, 4.0, 3.0, 2.0, 1.0];
my $n = gsl_blas_dnrm2(Math::GSL::Vector->new($data)->raw);
import numpy as np
np.linalg.norm(adata2[:, 0:3] - adata1[ipc1, 0:3], axis=1)
import numpy as np
n = np.linalg.norm(data)
require 'matrix'
data = Vector[5.0, 4.0, 3.0, 2.0, 1.0]
n = data.norm
use libm::sqrt;
fn euclidean(data: Vec<f64>) -> f64 {
    let mut n = 0.0;
    for i in data {
        n += i*i;
    }
    return sqrt(n as f64)
}
let n = euclidean(data);
data := #( 5 4 3 2 1 ).
n := data squared sum sqrt.