Be concise.
Be useful.
All contributions dictatorially edited by webmasters to match personal tastes.
Please do not paste any copyright violating material.
Please try to avoid dependencies to third-party libraries and frameworks.
x = a.lcm(b)
mpz_t _a, _b, _x;
mpz_init_set_str(_a, "123456789", 10);
mpz_init_set_str(_b, "987654321", 10);
mpz_init(_x);
mpz_lcm(_x, _a, _b);
gmp_printf("%Zd\n", _x);
int gcd(int a, int b)
{
while (b != 0)
{
int t = b;
b = a % t;
a = t;
}
return a;
}
int lcm(int a, int b)
{
if (a == 0 || b == 0)
return 0;
return (a * b) / gcd(a, b);
}
int x = lcm(140, 72);
x = lcm(a, b);
int lcm(int a, int b) => (a * b) ~/ gcd(a, b);
int gcd(int a, int b) {
while (b != 0) {
var t = b;
b = a % t;
a = t;
}
return a;
}
defmodule BasicMath do
def gcd(a, 0), do: a
def gcd(0, b), do: b
def gcd(a, b), do: gcd(b, rem(a,b))
def lcm(0, 0), do: 0
def lcm(a, b), do: (a*b)/gcd(a,b)
end
gcd(A,B) when A == 0; B == 0 -> 0;
gcd(A,B) when A == B -> A;
gcd(A,B) when A > B -> gcd(A-B, B);
gcd(A,B) -> gcd(A, B-A).
lcm(A,B) -> (A*B) div gcd(A, B).
gcd.GCD(nil, nil, a, b)
x.Div(a, gcd).Mul(x, b)
LCM is not in the standard library, but can be deduced from GCD.
gcd divides a, by definition.
Chaining is permitted and idiomatic.
a, b, gcd, x have pointer type *big.Int.
gcd divides a, by definition.
Chaining is permitted and idiomatic.
a, b, gcd, x have pointer type *big.Int.
x = lcm a b
const gcd = (a, b) => b === 0 ? a : gcd (b, a % b)
let x = (a * b) / gcd(a, b)
(setf x (lcm a b))
sub gcd {
my ($x, $y) = @_;
while ($x) { ($x, $y) = ($y % $x, $x) }
$y
}
sub lcm {
my ($x, $y) = @_;
($x && $y) and $x / gcd($x, $y) * $y or 0
}
sub lcm {
use integer;
my ($x, $y) = @_;
my ($f, $s) = @_;
while ($f != $s) {
($f, $s, $x, $y) = ($s, $f, $y, $x) if $f > $s;
$f = $s / $x * $x;
$f += $x if $f < $s;
}
$f
}