Idiom #9 Create a Binary Tree data structure
The structure must be recursive because left child and right child are binary trees too. A node has access to children nodes, but not to its parent.
The structure must be recursive because left child and right child are binary trees too. A node has access to children nodes, but not to its parent.
type BinTree[L any] struct {
Label L
Left, Right *BinTree[L]
}
interface Tree<T>{
boolean search(T x);
}
class Nil<T extends Comparable<? super T>> implements Tree<T>{
public boolean search(T x) { return false; }
}
class Node<T extends Comparable<? super T>> implements Tree<T> {
T item; Tree<T> left; Tree<T> right;
public Node(T i, Tree<T> l, Tree<T> r) {
item=i; left=l; right=r; }
public boolean search(T x) {
int cmp = x.compareTo(item);
return cmp==0 || (cmp<0 && left.search(x)) || (cmp>0 && right.search(x));
}
class BinTree<T extends Comparable<T>>{
T value;
BinTree<T> left;
BinTree<T> right;
}
(defclass node ()
((value
:initarg :value :initform nil
:accessor node-value)
(left-child
:initarg :left-child :initform nil
:accessor node-left-child)
(right-child
:initarg :right-child :initform nil
:accessor node-right-child)))
@interface Node:NSObject
@property id value; // id means any object value
@property Node *left,*right;
@end
// usage like
Node *n=[Node new];
n.value=@1;
n.left=otherNode;
n.right=anotherNode;
// somewhere needed also
@implementation Node @end
class BNode
{
public $data;
public $lNode;
public $rNode;
public function __construct($item)
{
$this->data = $item;
$this->lNode = null;
$this->rNode = null;
}
}
class Tree::Binary {
has 'left', is => 'ro', isa => Maybe[InstanceOf['Tree::Binary']];
has 'right', is => 'ro', isa => Maybe[InstanceOf['Tree::Binary']];
has 'val', is => 'ro', isa => Int;
}
my $t = Tree::Binary->new(
val => 42,
left => Tree::Binary->new(val => 23),
right => Tree::Binary->new(
val => 1729,
right => Tree::Binary->new(val => -1)
)
);
__END__
42
↙ ↘
23 1729
↙ ↘ ↙ ↘
∅ ∅ ∅ -1
sealed trait Tree[T <: Ordered[T]]:
def search(x: T): Boolean
final case class Nil[T <: Ordered[T]]() extends Tree[T]:
override def search(x: T): Boolean = false
final case class Node[T <: Ordered[T]](
item: T,
left: Tree[T],
right: Tree[T]
) extends Tree[T]:
override def search(other: T): Boolean =
item compare other match
case 0 => true
case n if n < 0 => left.search(other)
case n if n > 0 => right.search(other)
type BinTree struct { Label valueType Left, Right *BinTree }
type BinTree[L any] struct { Label L Left, Right *BinTree[L] }
class Node: def __init__(self, data, left_child, right_child): self.data = data self._left_child = left_child self._right_child = right_child
class Node: def __init__(self, data): self.data = data self.left = None self.right = None
type Tree_Node; type Tree_Node_Access is access Tree_Node; type Tree_Node is record Value: Integer; Left, Right: Tree_Node_Access; end record;
struct treenode{ int value; struct treenode* left; struct treenode* right; }
type treenode = Node of { value: int; left: treenode; right: treenode } | Leaf
struct binary_tree { int data; binary_tree *left = nullptr, *right = nullptr; };
class BinaryTree<T>:IComparable<T> { T value; BinaryTree<T> leftChild; BinaryTree<T> rightChild; }
struct BinaryTree(T) { T data; BinaryTree* left; BinaryTree* right; }
class Node<T> { final T value; Node<T> left, right; Node(this.value, {this.left, this.right}); }
defmodule BinaryTree do defstruct data: nil, left: nil, right: nil end
-type binary_tree(T) :: #{ data := T , left := binary_tree(T) , right := binary_tree(T) }.
type binary_tree integer :: value type(binary_tree), allocatable :: left type(binary_tree), allocatable :: right end type binary_tree
class BinTree<T extends Comparable<T>>{ T value BinTree<T> left BinTree<T> right }
data BT x = BEnd | BNode (BT x) x (BT x)
class Node { constructor (data) { this.data = data this.left = null this.right = null } }
interface Tree<T>{ boolean search(T x); } class Nil<T extends Comparable<? super T>> implements Tree<T>{ public boolean search(T x) { return false; } } class Node<T extends Comparable<? super T>> implements Tree<T> { T item; Tree<T> left; Tree<T> right; public Node(T i, Tree<T> l, Tree<T> r) { item=i; left=l; right=r; } public boolean search(T x) { int cmp = x.compareTo(item); return cmp==0 || (cmp<0 && left.search(x)) || (cmp>0 && right.search(x)); }
class BinTree<T extends Comparable<T>>{ T value; BinTree<T> left; BinTree<T> right; }
data class Node( val key: Int, val left: Node? = null, val right: Node? = null )
(defclass node () ((value :initarg :value :initform nil :accessor node-value) (left-child :initarg :left-child :initform nil :accessor node-left-child) (right-child :initarg :right-child :initform nil :accessor node-right-child)))
local function BinTree(v, l, r) return { val = v, left = l, right = r } end
@interface Node:NSObject @property id value; // id means any object value @property Node *left,*right; @end // usage like Node *n=[Node new]; n.value=@1; n.left=otherNode; n.right=anotherNode; // somewhere needed also @implementation Node @end
class BNode { public $data; public $lNode; public $rNode; public function __construct($item) { $this->data = $item; $this->lNode = null; $this->rNode = null; } }
type generic BinTree<T> = class Value: T; Left, Right: BinTree; end;
class Tree::Binary { has 'left', is => 'ro', isa => Maybe[InstanceOf['Tree::Binary']]; has 'right', is => 'ro', isa => Maybe[InstanceOf['Tree::Binary']]; has 'val', is => 'ro', isa => Int; } my $t = Tree::Binary->new( val => 42, left => Tree::Binary->new(val => 23), right => Tree::Binary->new( val => 1729, right => Tree::Binary->new(val => -1) ) ); __END__ 42 ↙ ↘ 23 1729 ↙ ↘ ↙ ↘ ∅ ∅ ∅ -1
Node = Struct.new(:left, :right, :value) parent = Node.new(Node.new, Node.new)
struct BinTree<T> { value: T, left: Option<Box<BinTree<T>>>, right: Option<Box<BinTree<T>>>, }
case class BinaryTree[T <: Ordered[T]]( value: T, left: Option[BinaryTree[T]], right: Option[BinaryTree[T]] )
sealed trait Tree[T <: Ordered[T]]: def search(x: T): Boolean final case class Nil[T <: Ordered[T]]() extends Tree[T]: override def search(x: T): Boolean = false final case class Node[T <: Ordered[T]]( item: T, left: Tree[T], right: Tree[T] ) extends Tree[T]: override def search(other: T): Boolean = item compare other match case 0 => true case n if n < 0 => left.search(other) case n if n > 0 => right.search(other)
(define (make-btree value left right) (cons value (cons left right))) (define (btree-value bt) (car bt)) (define (btree-left bt) (cadr bt)) (define (btree-right bt) (cddr bt))
Object subclass: #TreeNode instanceVariableNames: 'left right' classVariableNames: '' poolDictionaries: '' category: 'Trees'.