Logo

Programming-Idioms

  • JS
  • Fortran

Idiom #301 Recursive Fibonacci sequence

Compute the Fibonacci sequence of n numbers using recursion.

Note that naive recursion is extremely inefficient for this task.

  recursive function f (n) result(res)
    integer, value, intent(in) :: n
    integer :: res
    if (n == 0) then
       res = 0
    else if (n <= 2) then
       res = 1
    else
       if (mod(n,2) == 1) then
          res = f((n + 1)/2)**2 + f((n - 1)/2)**2
       else
          res = f(n/2) * (f(n/2-1) + f(n/2 + 1))
       end if
    end if
  end function f

The function has to be marked recursive. Because it calls itself, it needs a result clause for the name of the result.

The algorithm (a bit more efficient than straight recursion) is due to https://oeis.org/A331124 .
int fibonacci(int n) => n <= 2 ? 1 : fibonacci(n - 2) + fibonacci(n - 1);

New implementation...
< >
Sikon