Logo

Programming-Idioms

Calculate the mean m and the standard deviation s of the list of floating point values data.
New implementation

Be concise.

Be useful.

All contributions dictatorially edited by webmasters to match personal tastes.

Please do not paste any copyright violating material.

Please try to avoid dependencies to third-party libraries and frameworks.

Other implementations
using System.Linq;
using System.Collections.Generic;
var m = data.Average();
var s = CalculateStdDev(data);

float CalculateStdDev(IEnumerable<float> values)
{
	double ret = 0;

	if (values.Count() > 0)
	{
		double avg = values.Average();
	      	double sum = values.Sum(d => Math.Pow(d - avg, 2));
	      	ret = Math.Sqrt((sum) / values.Count()-1);
	}
	return (float)ret;
}
defmodule SD do
  import Enum, only: [map: 2, sum: 1]
  import :math, only: [sqrt: 1, pow: 2]

  def standard_deviation(data) do
    m = mean(data)
    data |> variance(m) |> mean |> sqrt
  end

  def mean(data) do
    sum(data) / length(data)
  end

  def variance(data, mean) do
    for n <- data, do: pow(n - mean, 2)
  end
end

# usage
data = [1,2,3,4]
m = SD.mean(data) # => 2.5
sd = SD.standard_deviation(data) # => 1.118033988749895
real, allocatable :: data(:)
real :: m, s
...
m = sum( data ) / size( data )
s = sqrt( sum( data**2 ) / size( data ) - m**2 )
import "github.com/gonum/stat"
m, s := stat.MeanStdDev(data, nil)
mean dat = sum dat / (fromIntegral $ length dat)

stddev dat = sqrt . mean $ map ((**2) . (m -)) dat
  where
    m = mean dat
uses math;
var
  m, s: double;
  data: array of double;
...
  MeanAndStdDev(data, m, s);
...
use Statistics::Lite qw(mean stddev);
my $m = mean @data;
my $s = stddev @data;
import statistics
m = statistics.mean(data)
sd = statistics.stdev(data)
m  = data.sum / data.length.to_f
sd = Math.sqrt data.sum { |n| (m-n)**2 } / data.length.to_f 
let sum: f64 = data.iter().sum();
let m = sum / (data.len() as f64);
let sum_of_squares: f64 = data.iter().map(|item| (item - m) * (item - m)).sum();
let s = (sum_of_squares / (list.len() as f64)).sqrt();