var m = data.Average();
var s = CalculateStdDev(data);
float CalculateStdDev(IEnumerable<float> values)
{
double ret = 0;
if (values.Count() > 0)
{
double avg = values.Average();
double sum = values.Sum(d => Math.Pow(d - avg, 2));
ret = Math.Sqrt((sum) / values.Count()-1);
}
return (float)ret;
}
defmodule SD do
import Enum, only: [map: 2, sum: 1]
import :math, only: [sqrt: 1, pow: 2]
def standard_deviation(data) do
m = mean(data)
data |> variance(m) |> mean |> sqrt
end
def mean(data) do
sum(data) / length(data)
end
def variance(data, mean) do
for n <- data, do: pow(n - mean, 2)
end
end
# usage
data = [1,2,3,4]
m = SD.mean(data) # => 2.5
sd = SD.standard_deviation(data) # => 1.118033988749895
mean dat = sum dat / (fromIntegral $ length dat)
stddev dat = sqrt . mean $ map ((**2) . (m -)) dat
where
m = mean dat
import static java.lang.Math.pow;
import static java.lang.Math.sqrt;
import static java.util.stream.DoubleStream.of;
int n = data.length;
double m = of(data).sum() / n,
s = of(data).map(x -> pow(x - m, 2)).sum();
s = sqrt(s / n);
var m = data.Average(); var s = CalculateStdDev(data); float CalculateStdDev(IEnumerable<float> values) { double ret = 0; if (values.Count() > 0) { double avg = values.Average(); double sum = values.Sum(d => Math.Pow(d - avg, 2)); ret = Math.Sqrt((sum) / values.Count()-1); } return (float)ret; }
defmodule SD do import Enum, only: [map: 2, sum: 1] import :math, only: [sqrt: 1, pow: 2] def standard_deviation(data) do m = mean(data) data |> variance(m) |> mean |> sqrt end def mean(data) do sum(data) / length(data) end def variance(data, mean) do for n <- data, do: pow(n - mean, 2) end end # usage data = [1,2,3,4] m = SD.mean(data) # => 2.5 sd = SD.standard_deviation(data) # => 1.118033988749895
real, allocatable :: data(:) real :: m, s ... m = sum( data ) / size( data ) s = sqrt( sum( data**2 ) / size( data ) - m**2 )
m, s := stat.MeanStdDev(data, nil)
mean dat = sum dat / (fromIntegral $ length dat) stddev dat = sqrt . mean $ map ((**2) . (m -)) dat where m = mean dat
int n = data.length; double m = of(data).sum() / n, s = of(data).map(x -> pow(x - m, 2)).sum(); s = sqrt(s / n);
var m, s: double; data: array of double; ... MeanAndStdDev(data, m, s); ...
my $m = mean @data; my $s = stddev @data;
m = statistics.mean(data) sd = statistics.stdev(data)
m = data.sum / data.length.to_f sd = Math.sqrt data.sum { |n| (m-n)**2 } / data.length.to_f
let sum: f64 = data.iter().sum(); let m = sum / (data.len() as f64); let sum_of_squares: f64 = data.iter().map(|item| (item - m) * (item - m)).sum(); let s = (sum_of_squares / (list.len() as f64)).sqrt();