Logo

Programming-Idioms

Write two functions log2d and log2u, which calculate the binary logarithm of their argument n rounded down and up, respectively. n is assumed to be positive. Print the result of these functions for numbers from 1 to 12.
New implementation

Be concise.

Be useful.

All contributions dictatorially edited by webmasters to match personal tastes.

Please do not paste any copyright violating material.

Please try to avoid dependencies to third-party libraries and frameworks.

Other implementations
program main
  implicit none
  integer :: i
  do i=1,12
     print *,i,log2d(i),log2u(i)
  end do
contains
  integer function log2d (n)
    integer, intent(in) :: n
    log2d = bit_size(n) - 1 - leadz(n)
  end function log2d

  integer function log2u (n)
    integer, intent(in) :: n
    log2u = bit_size(n) - leadz(n-1)
  end function log2u
end program main
log2d :: Double -> Integer
log2d = floor . logBase 2

log2u :: Double -> Integer
log2u = ceiling . logBase 2

main :: IO ()
main = print $ [log2d, log2u] <*> [1..12]
import static java.lang.Math.ceil;
import static java.lang.Math.floor;
import static java.lang.Math.log;
import static java.lang.System.out;
interface F {
    double log2 = log(2);
    double f(double n);
}
F log2d = x -> floor(log(x) / F.log2),
  log2u = x -> ceil(log(x) / F.log2);
for (int i = 1; i <= 12; ++i) {
    out.printf("log2d(%s) = %s%n", i, log2d.f(i));
    out.printf("log2u(%s) = %s%n", i, log2u.f(i));
}
function log2d(n: uint32): integer;
var
  temp: uint32;
begin
  Result := 0;
  temp := 1;
  while (temp < n) do
  begin
    Inc(Result);
    temp := 1 shl Result;
  end;
  if (temp > n) then
    Dec(Result);
end;

function log2u(n: uint32): integer;
begin
  Result := log2d(n);
  if (1 shl Result < n) then
    Inc(Result);
end;

var
  i: integer;
begin
  for i := 1 to 16 do
    writeln(i,': log2d = ',log2d(i),', log2u = ',log2u(i));
end.
use POSIX qw( log2 floor ceil );
sub log2d { floor log2 shift };

sub log2u { ceil log2 shift };
import math
def log2d(n):
    return math.floor(math.log2(n))

def log2u(n):
    return math.ceil(math.log2(n))

for n in range(1, 13):
    print(n, log2d(n), log2u(n))
from math import log2, floor, ceil
log2d = lambda x: floor(log2(x))
log2u = lambda x: ceil(log2(x))
for i in range(1, 13):
    print(i, log2d(i), log2u(i))
def log2d(n) =  n.bit_length - 1

def log2u(n) = 2 ** log2d(n) == n ? log2d(n) : log2d(n) + 1

(1..12).each{|n| puts "#{n}  #{log2d(n)}  #{log2u(n)}" }
fn log2d(n: f64) -> f64 {
    n.log2().floor()
}

fn log2u(n: f64) -> f64 {
    n.log2().ceil()
}

fn main() {
    for n in 1..=12 {
        let f = f64::from(n);
        println!("{} {} {}", n, log2d(f), log2u(f));
    }
}