Logo

Programming-Idioms

Calculate binom(n, k) = n! / (k! * (n-k)!). Use an integer type able to handle huge numbers.
New implementation

Be concise.

Be useful.

All contributions dictatorially edited by webmasters to match personal tastes.

Please do not paste any copyright violating material.

Please try to avoid dependencies to third-party libraries and frameworks.

Other implementations
(defn binom [n k]
  (let [fact #(apply * (range 1 (inc %)))]
    (/ (fact n)
       (* (fact k) (fact (- n k))))))
System.Numerics
public BigInteger binom(int n, int k)
{
	return factorial(n)/(factorial(k) * factorial(n-k));
}

public BigInteger factorial(int x)
{
	BigInteger result = 1;
	for(int i=1;i<=x;i++)
	{
	result = result * i;
	}
	return result;
}
import std.bigint;
BigInt binom(uint n, uint k)
{
   assert(n >= k);
   BigInt r = 1;
   for(uint i = 0; i <= k; ++i)
   {
      r *= n-i;
      r /= i+1;
   }
   return r;
}
int binom(int n, int k) {
  int result = 1;
  for (int i = 0; i < k; i++) {
    result = result * (n - i) ~/ (i + 1);
  }
  return result;
}
integer, parameter :: i8 = selected_int_kind(18)
integer, parameter :: dp = selected_real_kind(15)
n = 100
k = 5
print *,nint(exp(log_gamma(n+1.0_dp)-log_gamma(n-k+1.0_dp)-log_gamma(k+1.0_dp)),kind=i8)
import "math/big"
z := new(big.Int)
z.Binomial(n, k)
binom n k = product [1+n-k..n] `div` product [1..k]
const fac = x => x ? x * fac (x - 1) : x + 1
const binom = (n, k) => fac (n) / fac (k) / fac (n - k >= 0 ? n - k : NaN)
import java.math.BigInteger;
static BigInteger binom(int N, int K) {
    BigInteger ret = BigInteger.ONE;
    for (int k = 0; k < K; k++) {
        ret = ret.multiply(BigInteger.valueOf(N-k))
                 .divide(BigInteger.valueOf(k+1));
    }
    return ret;
}
gmp_binomial($n, $k);
uses ncalc;
var
  N, K, Res: TValue;
begin
  Res := BinomN(N, K);
end.
sub binom {
  my ($n, $k) = @_;
  if ($k > $n - $k) { $k = $n - $k }
  my $r = 1;
  for ( my $i = $n/$n ; $i <= $k;) {
    $r *= $n-- / $i++
  }
  return $r
}
use bigint;
sub binom {
   my ($n, $k) = @_;
   my $fact = sub {
      my $n = shift;
      return $n<2 ? 1 : $n * $fact->($n-1);
   };
   return $fact->($n) / ($fact->($k) * ($fact->($n-$k)));
}
import math
def binom(n, k):
    return math.factorial(n) // math.factorial(k) // math.factorial(n - k)
import math
def binom(n, k):
    return math.comb(n, k)
def binom(n,k)
  (1+n-k..n).inject(:*)/(1..k).inject(:*)
end
extern crate num;

use num::bigint::BigInt;
use num::bigint::ToBigInt;
use num::traits::One;
fn binom(n: u64, k: u64) -> BigInt {
    let mut res = BigInt::one();
    for i in 0..k {
        res = (res * (n - i).to_bigint().unwrap()) /
              (i + 1).to_bigint().unwrap();
    }
    res
}