func (t *Tree[L]) Dfs(f func(*Tree[L])) {
if t == nil {
return
}
f(t)
for _, child := range t.Children {
child.Dfs(f)
}
}
func (t *Tree) Dfs(f func(*Tree)) {
if t == nil {
return
}
f(t)
for _, child := range t.Children {
child.Dfs(f)
}
}
void dfs(const auto &tree, const auto &root)
{
f(root);
for (auto child : tree)
dfs(tree, child);
}
public static void Dfs(Action<Tree> f, Tree root) {
f(root);
foreach(var child in root.Children)
Dfs(f, child);
}
void prefixOrderTraversal(alias f)(ref Tree tree)
{
f(tree);
foreach (child; tree.children)
prefixOrderTraversal!f(child);
}
traverse(Tree node, f(value)) {
f(node.value);
for (var child in node.children) {
traverse(child, f);
}
}
recursive subroutine depth_first (node, f)
type (tr), pointer :: node
interface
subroutine f(node)
import
type(tr), pointer :: node
end subroutine f
end interface
if (associated(node%left)) call depth_first (node, f)
if (associated(node%right)) call depth_first (node, f)
call f(node)
end subroutine depth_first
preordered (Node pivot left right) =
pivot : preordered left ++ preordered right
preordered Ø = []
f <$> (preordered tree)
function DFS(f, root) {
f(root)
if (root.children) {
root.children.forEach(child => DFS(f, child))
}
}
function dfs($f, $root)
{
$f($root);
foreach($root as $child)
{
dfs($child);
}
}
sub depth_first_traversal {
my ($f, $treenode) = @_;
$f->($treenode);
depth_first_traversal($f, $_) for @{$treenode->{children}};
}
def DFS(f, root):
f(root)
for child in root:
DFS(f, child)
def dfs(f, node)
f.(node)
node.children.each do |child|
dfs(f, child)
end
end
pub struct Tree<V> {
children: Vec<Tree<V>>,
value: V
}
impl<V> Tree<V> {
pub fn dfs<F: Fn(&V)>(&self, f: F) {
self.dfs_helper(&f);
}
fn dfs_helper<F: Fn(&V)>(&self, f: &F) {
(f)(&self.value);
for child in &self.children {
child.dfs_helper(f)
}
}
// ...
}