Calculate n, the Euclidean norm of data, where data is a list of floating point values.
const n = Math.hypot(...data)
var n = Math.hypot.apply(null, data)
n = norm2( data )
func Euclidean(data []float64) float64 { n := 0.0 for _, val := range data { n += val * val } return math.Sqrt(n)
double n = 0d; for(double value : data) { n += value * value; } n = Math.sqrt(n);
uses math;
var data: array of double; ... n := norm(data); ...
use Math::GSL::Vector qw(); use Math::GSL::BLAS qw(gsl_blas_dnrm2);
my $data = [5.0, 4.0, 3.0, 2.0, 1.0]; my $n = gsl_blas_dnrm2(Math::GSL::Vector->new($data)->raw);
import numpy as np
np.linalg.norm(adata2[:, 0:3] - adata1[ipc1, 0:3], axis=1)
n = np.linalg.norm(data)
require 'matrix'
data = Vector[5.0, 4.0, 3.0, 2.0, 1.0] n = data.norm
use libm::sqrt;
fn euclidean(data: Vec<f64>) -> f64 { let mut n = 0.0; for i in data { n += i*i; } return sqrt(n as f64) } let n = euclidean(data);
data := #( 5 4 3 2 1 ). n := data squared sum sqrt.
No security, no password. Other people might choose the same nickname.