- Scala
Select your favorite languages :
- Or search :
Idiom #195 Pass a two-dimensional array
Pass an array a of real numbers to the procedure (resp. function) foo. Output the size of the array, and the sum of all its elements when each element is multiplied with the array indices i and j (assuming they start from one).
subroutine foo(a)
implicit none
real, dimension(:,:) :: a
real :: s
integer :: i,j
print *,size(a,1), size(a,2)
s = 0
do j=1,size(a,2)
do i=1,size(a,1)
s = s + a(i,j) * i * j
end do
end do
print *,s
end subroutine foo
!
call foo(a)
This is an assumed-shape array. The compiler automatically passes the bounds.
/**
* @param {Array<Array>} arry
*
* @return {Array<Array>}
*/
function foo(arry) {
let len = 0;
let sum = 0;
arry.forEach(function(base, i) {
len += base.length;
base.forEach(function(a, j) {
sum += a * (i + 1) * (j + 1);
});
});
console.log('Array size:', arry.length, ',', len);
return sum;
}
foo(arry2d);
public static void foo(int[][] a){
System.out.println("Array a has a size of " + a.length+" by " + a[0].length);
int sum = 0;
for (int i = 0; i<a.length; i++){
for (int j = 0; j<a[0].length; j++){
sum += ((i+1)*(j+1)*a[i][j]);
}
}
System.out.println("The sum of all elements multiplied by their indices is: " + sum);
}
This method assumes an array of size m x n where all arrays are the same size and a has at least 1 element.
procedure foo(a: array of double);
var
sum: double;
i: Integer;
begin
for i := low(a) to high(a) do
sum := sum + (i+1)*a[i];
writeln('Size = ',Length(a),', Sum = ',sum:6:5);
end;
...
foo(a);
...
dynamic arrays start at index zero, so multiply by the index+1 for the sake of this example.
The :6:5 formats the output of the floating point varaible sum.
However, this does not seem to be a two-dimensional array.
The :6:5 formats the output of the floating point varaible sum.
However, this does not seem to be a two-dimensional array.
def foo(a):
z = 0
for i, x in enumerate(a, 1):
for j, y in enumerate(x, 1):
# z = z + (y * i) + (y * j)
z = z + (y * i * j)
print(len(a), z)
foo(a)
fn foo(a: Vec<Vec<usize>>) {
println!(
"Length of array: {}",
a.clone()
.into_iter()
.flatten()
.collect::<Vec<usize>>()
.len()
);
let mut sum = 0;
for (i, j) in izip!(&a[0], &a[1]) {
sum += i * j
}
println!("Sum of all products of indices: {}", sum);
}
By useing izip! macro we can chain itteration over elements of array a