This language bar is your friend. Select your favorite languages!
Select your favorite languages :
- Or search :
Idiom #74 Compute GCD
Compute the greatest common divisor x of big integers a and b. Use an integer type able to handle huge numbers.
- C
- Clojure
- C++
- C++
- C#
- C#
- D
- D
- Dart
- Dart
- Elixir
- Elixir
- Fortran
- Go
- Haskell
- Haskell
- Haskell
- JS
- Java
- Lua
- Lua
- PHP
- Pascal
- Perl
- Python
- Python
- Ruby
- Rust
- VB
mpz_t _a, _b, _x;
mpz_init_set_str(_a, "123456789", 10);
mpz_init_set_str(_b, "987654321", 10);
mpz_init(_x);
mpz_gcd(_x, _a, _b);
gmp_printf("%Zd\n", _x);
auto x = std::gcd(a, b);
C++17 or later
Uses the absolute values of a and b in calculations
Uses the absolute values of a and b in calculations
x = gcd(a, b);
This is the standard way to compute gcd, however it doesn't work with std.bigints right now (https://issues.dlang.org/show_bug.cgi?id=7102)
BigInt gcd(in BigInt x, in BigInt y) pure {
if (y == 0)
return x;
return gcd(y, x%y);
}
gcd(a, b);
As this time, std.numeric.gcd doesn't work with BigInts. Here is a non-optimal but working implementation.
function gcd(m,n) result(answer)
implicit none
integer(kind=int64),intent(in) :: m, n
integer(kind=int64) :: answer,irest,ifirst
ifirst=iabs(m)
answer=iabs(n)
if(answer.eq.0)then
answer=ifirst
else
do
irest = mod(ifirst,answer)
if(irest == 0) exit
ifirst = answer
answer = irest
enddo
answer= iabs(answer)
endif
end function gcd
const gcd = (a, b) => b === 0 ? a : gcd (b, a % b)
Warning: This implementation is not the most efficient. Figure out a more efficient way to do this if you're up for it!
function GCD(a,b:int64):int64;
var t:int64;
begin
while b <> 0 do
begin
t := b;
b := a mod b;
a := t;
end;
result := a;
end;
Using the Euklid Algorithm
x = math.gcd(a, b)
Starting with Python 3.5 the gcd-function is part of the math-library