Compute the greatest common divisor x of big integers a and b. Use an integer type able to handle huge numbers.
mpz_t _a, _b, _x;
mpz_init_set_str(_a, "123456789", 10);
mpz_init_set_str(_b, "987654321", 10);
mpz_init(_x);
mpz_gcd(_x, _a, _b);
gmp_printf("%Zd\n", _x);
auto x = std::gcd(a, b);
x = gcd(a, b);
BigInt gcd(in BigInt x, in BigInt y) pure {
if (y == 0)
return x;
return gcd(y, x%y);
}
gcd(a, b);
function gcd(m,n) result(answer)
implicit none
integer(kind=int64),intent(in) :: m, n
integer(kind=int64) :: answer,irest,ifirst
ifirst=iabs(m)
answer=iabs(n)
if(answer.eq.0)then
answer=ifirst
else
do
irest = mod(ifirst,answer)
if(irest == 0) exit
ifirst = answer
answer = irest
enddo
answer= iabs(answer)
endif
end function gcd
const gcd = (a, b) => b === 0 ? a : gcd (b, a % b)
function GCD(a,b:int64):int64;
var t:int64;
begin
while b <> 0 do
begin
t := b;
b := a mod b;
a := t;
end;
result := a;
end;
x = math.gcd(a, b)
int gcd(int a, int b) { if (b == 0) return a; else return gcd(b, a % b); }
int gcd(int a, int b) { while (b != 0) { int t = b; b = a % t; a = t; } return a; }
mpz_t _a, _b, _x; mpz_init_set_str(_a, "123456789", 10); mpz_init_set_str(_b, "987654321", 10); mpz_init(_x); mpz_gcd(_x, _a, _b); gmp_printf("%Zd\n", _x);
(defn gcd [a b] (if (zero? b) a (recur b (mod a b))))
unsigned long long int GCD(unsigned long long int a, unsigned long long int b) { unsigned long long int c=a%b; if(c==0) return b; return GCD(b, c); }
auto x = std::gcd(a, b);
x = gcd(a, b);
BigInt gcd(in BigInt x, in BigInt y) pure { if (y == 0) return x; return gcd(y, x%y); } gcd(a, b);
x = a.gcd(b);
int gcd(int a, int b) { while (b != 0) { var t = b; b = a % t; a = t; } return a; }
x = Integer.gcd(a, b)
defmodule Gcd do def gcd(x, 0), do: x def gcd(x, y), do: gcd(y, rem(x,y)) end x = Gcd.gcd(a, b)
function gcd(m,n) result(answer) implicit none integer(kind=int64),intent(in) :: m, n integer(kind=int64) :: answer,irest,ifirst ifirst=iabs(m) answer=iabs(n) if(answer.eq.0)then answer=ifirst else do irest = mod(ifirst,answer) if(irest == 0) exit ifirst = answer answer = irest enddo answer= iabs(answer) endif end function gcd
x.GCD(nil, nil, a, b)
gcd a b | a==b =a | a>b = gcd(a-b) b | otherwise = gcd a (b-a)
x = gcd a b
gcd x y = gcd' (abs x) (abs y) where gcd' a 0 = a gcd' a b = gcd' b (a `rem` b)
const gcd = (a, b) => b === 0 ? a : gcd (b, a % b)
BigInteger x = a.gcd(b);
function gcd(a, b) return b==0 and a or gcd(b,a%b) end
function gcd(x, y) if (y == 0) then return x else return gcd(y, x%y) end end
$x = gmp_gcd($a, $b);
function GCD(a,b:int64):int64; var t:int64; begin while b <> 0 do begin t := b; b := a mod b; a := t; end; result := a; end;
sub gcd { my ($A, $B) = @_; return 0 == $B ? $A : gcd($B, $A % $B); }
x = math.gcd(a, b)
x = gcd(a, b)
x = a.gcd(b)
let x = a.gcd(&b);
Dim x = BigInteger.GreatestCommonDivisor(a, b)