Declare a complex x and initialize it with value (3i - 2). Then multiply it by i.
x = 3i - 2 x *= 1i
with Ada.Numerics.Complex_Types;
declare use Ada.Numerics.Complex_Types; X : Complex := (Re => -2.0, Im => 3.0); begin X := X * i; end;
#include <complex.h>
float complex _x = -2 + 3 * I; _x *= I;
#include <complex>
using namespace std::complex_literals; auto x = 3i - 2.; x *= 1i;
System.Numerics;
var x = new Complex(-2, 3); x *= Complex.ImaginaryOne;
import std.complex;
auto x = complex(-2, 3); x * complex(0, 1);
complex :: x x = (-2,3) x = x * (0,1)
x := 3i - 2 x *= 1i
ímport Data.Complex
x = (0 :+ 1) * ((0 - 2) :+ 3)
let i = ( 0 :+ 1 ) ; x = 3 * i - 2 in x * i
var math = require('mathjs');
var x = math.complex(-2, 3); x = math.multiply(x, math.i);
import org.apache.commons.math4.complex.Complex;
Complex x = new Complex(-2.0, 3.0); x = x.multiply(Complex.I);
(let ((x #c(-2 3))) (* x #c(0 1)))
uses ucomplex;
var C: Complex; begin C := 3*i - 2; end.
use Math::Complex;
my $x = cplx(-2, 3); $x *= i;
my $x = 3*i - 2; $x *= i;
x = 3j-2 y = x * 1j
extern crate num; use num::Complex;
let mut x = Complex::new(-2, 3); x *= Complex::i();
(define x -2+3i) (display (* x 0+1i))
No security, no password. Other people might choose the same nickname.