var
N, K, Res: TValue;
begin
Res := BinomN(N, K);
end.
(defn binom [n k]
(let [fact #(apply * (range 1 (inc %)))]
(/ (fact n)
(* (fact k) (fact (- n k))))))
public BigInteger binom(int n, int k)
{
return factorial(n)/(factorial(k) * factorial(n-k));
}
public BigInteger factorial(int x)
{
BigInteger result = 1;
for(int i=1;i<=x;i++)
{
result = result * i;
}
return result;
}
BigInt binom(uint n, uint k)
{
assert(n >= k);
BigInt r = 1;
for(uint i = 0; i <= k; ++i)
{
r *= n-i;
r /= i+1;
}
return r;
}
int binom(int n, int k) {
int result = 1;
for (int i = 0; i < k; i++) {
result = result * (n - i) ~/ (i + 1);
}
return result;
}
integer, parameter :: i8 = selected_int_kind(18)
integer, parameter :: dp = selected_real_kind(15)
n = 100
k = 5
print *,nint(exp(log_gamma(n+1.0_dp)-log_gamma(n-k+1.0_dp)-log_gamma(k+1.0_dp)),kind=i8)
z := new(big.Int)
z.Binomial(n, k)
binom n k = product [1+n-k..n] `div` product [1..k]
const fac = x => x ? x * fac (x - 1) : x + 1
const binom = (n, k) => fac (n) / fac (k) / fac (n - k >= 0 ? n - k : NaN)
static BigInteger binom(int N, int K) {
BigInteger ret = BigInteger.ONE;
for (int k = 0; k < K; k++) {
ret = ret.multiply(BigInteger.valueOf(N-k))
.divide(BigInteger.valueOf(k+1));
}
return ret;
}
sub binom {
my ($n, $k) = @_;
my $fact = sub {
my $n = shift;
return $n<2 ? 1 : $n * $fact->($n-1);
};
return $fact->($n) / ($fact->($k) * ($fact->($n-$k)));
}
sub binom {
my ($n, $k) = @_;
if ($k > $n - $k) { $k = $n - $k }
my $r = 1;
for ( my $i = $n/$n ; $i <= $k;) {
$r *= $n-- / $i++
}
return $r
}
def binom(n, k):
return math.factorial(n) // math.factorial(k) // math.factorial(n - k)
def binom(n, k):
return math.comb(n, k)
def binom(n,k)
(1+n-k..n).inject(:*)/(1..k).inject(:*)
end
fn binom(n: u64, k: u64) -> BigInt {
let mut res = BigInt::one();
for i in 0..k {
res = (res * (n - i).to_bigint().unwrap()) /
(i + 1).to_bigint().unwrap();
}
res
}