Logo

Programming-Idioms

  • Python
  • Perl

Idiom #67 Binomial coefficient "n choose k"

Calculate binom(n, k) = n! / (k! * (n-k)!). Use an integer type able to handle huge numbers.

use bigint;
sub binom {
   my ($n, $k) = @_;
   my $fact = sub {
      my $n = shift;
      return $n<2 ? 1 : $n * $fact->($n-1);
   };
   return $fact->($n) / ($fact->($k) * ($fact->($n-$k)));
}
sub binom {
  my ($n, $k) = @_;
  if ($k > $n - $k) { $k = $n - $k }
  my $r = 1;
  for ( my $i = $n/$n ; $i <= $k;) {
    $r *= $n-- / $i++
  }
  return $r
}

This algorithm is faster and uses less memory than naïve use of factorials.
Because it does not generate huge intermediate values, it can calculate a reasonable approximation to ¹⁰⁰⁰C₅₀₀ using IEEE double-precision FP without needing BigNum support; however it will calculate the exact answer if either parameter is a BigNum.
As a further optimisation, this algorithm takes advantage of the identity ⁿCₖ≡ⁿC₍ₙ₋ₖ₎.
$i inherits the type of $n.
import math
def binom(n, k):
    return math.comb(n, k)

Python 3.8+
import math
def binom(n, k):
    return math.factorial(n) // math.factorial(k) // math.factorial(n - k)
long long binom(long long n, long long k){
  long long outp = 1;
  for(long long i = n - k + 1; i <= n; ++i) outp *= i;
  for(long long i = 2; i <= k; ++i) outp /= i;
  return outp;
}

c does not have a BigInt type, as a substitute long long is used.
To increase the range as much as possible, the formula is slightly different than the one presented in the idiom, but it gives the same results.

New implementation...
< >
programming-idioms.org